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Chapter 1

Set Theory and Logic

We adopt, as most mathematicians do, the naive point of view regarding set theory.
We shall assume that what is meant by a set of objects is intuitively clear, and we shall
proceed on that basis without analyzing the concept further. Such an analysis properly
belongs to the foundations of mathematics and to mathematical logic, and it is not our
purpose to initiate the study of those fields.

Logicians have analyzed set theory in great detail, and they have formulated ax-
ioms for the subject. Each of their axioms expresses a property of sets that mathe-
maticians commonly accept, and collectively the axioms provide a foundation broad
enough and strong enough that the rest of mathematics can be built on them.

It is unfortunately true that careless use of set theory, relying on intuition alone,
can lead to contradictions. Indeed, one of the reasons for the axiomatization of set
theory was to formulate rules for dealing with sets that would avoid these contradic-
tions. Although we shall not deal with the axioms explicitly, the rules we follow in
dealing with sets derive from them. In this book, you will learn how to deal with sets
in an “apprentice” fashion, by observing how we handle them and by working with
them yourself. At some point of your studies, you may wish to study set theory more
carefully and in greater detail; then a course in logic or foundations will be in order.

From Chapter 1 of , Second  Edition. James R. Munkres.
Copyright  ©   2000 by Pearson Education, Inc. All rights reserved. 
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4 Set Theory and Logic Ch. 1

§1 Fundamental Concepts

Here we introduce the ideas of set theory, and establish the basic terminology and
notation. We also discuss some points of elementary logic that, in our experience, are
apt to cause confusion.

Basic Notation

Commonly we shall use capital letters A, B, . . . to denote sets, and lowercase letters
a, b, . . . to denote the objects or elements belonging to these sets. If an object a
belongs to a set A, we express this fact by the notation

a ∈ A.

If a does not belong to A, we express this fact by writing

a /∈ A.

The equality symbol= is used throughout this book to mean logical identity. Thus,
when we write a = b, we mean that “a” and “b” are symbols for the same object. This
is what one means in arithmetic, for example, when one writes 2

4 = 1
2 . Similarly, the

equation A = B states that “A” and “B” are symbols for the same set; that is, A and B
consist of precisely the same objects.

If a and b are different objects, we write a �= b; and if A and B are different sets,
we write A �= B. For example, if A is the set of all nonnegative real numbers, and B
is the set of all positive real numbers, then A �= B, because the number 0 belongs to A
and not to B.

We say that A is a subset of B if every element of A is also an element of B; and
we express this fact by writing

A ⊂ B.

Nothing in this definition requires A to be different from B; in fact, if A = B, it is true
that both A ⊂ B and B ⊂ A. If A ⊂ B and A is different from B, we say that A is a
proper subset of B, and we write

A � B.

The relations ⊂ and � are called inclusion and proper inclusion, respectively. If
A ⊂ B, we also write B ⊃ A, which is read “B contains A.”

How does one go about specifying a set? If the set has only a few elements, one
can simply list the objects in the set, writing “A is the set consisting of the elements a,
b, and c.” In symbols, this statement becomes

A = {a, b, c},
where braces are used to enclose the list of elements.

2



§1 Fundamental Concepts 5

The usual way to specify a set, however, is to take some set A of objects and some
property that elements of A may or may not possess, and to form the set consisting
of all elements of A having that property. For instance, one might take the set of
real numbers and form the subset B consisting of all even integers. In symbols, this
statement becomes

B = {x | x is an even integer}.
Here the braces stand for the words “the set of,” and the vertical bar stands for the
words “such that.” The equation is read “B is the set of all x such that x is an even
integer.”

The Union of Sets and the Meaning of “or”

Given two sets A and B, one can form a set from them that consists of all the elements
of A together with all the elements of B. This set is called the union of A and B and
is denoted by A ∪ B. Formally, we define

A ∪ B = {x | x ∈ A or x ∈ B}.
But we must pause at this point and make sure exactly what we mean by the statement
“x ∈ A or x ∈ B.”

In ordinary everyday English, the word “or” is ambiguous. Sometimes the state-
ment “P or Q” means “P or Q, or both” and sometimes it means “P or Q, but not
both.” Usually one decides from the context which meaning is intended. For example,
suppose I spoke to two students as follows:

“Miss Smith, every student registered for this course has taken either a course in
linear algebra or a course in analysis.”

“Mr. Jones, either you get a grade of at least 70 on the final exam or you will flunk
this course.”

In the context, Miss Smith knows perfectly well that I mean “everyone has had linear
algebra or analysis, or both,” and Mr. Jones knows I mean “either he gets at least 70
or he flunks, but not both.” Indeed, Mr. Jones would be exceedingly unhappy if both
statements turned out to be true!

In mathematics, one cannot tolerate such ambiguity. One has to pick just one
meaning and stick with it, or confusion will reign. Accordingly, mathematicians have
agreed that they will use the word “or” in the first sense, so that the statement “P or Q”
always means “P or Q, or both.” If one means “P or Q, but not both,” then one has to
include the phrase “but not both” explicitly.

With this understanding, the equation defining A∪B is unambiguous; it states that
A ∪ B is the set consisting of all elements x that belong to A or to B or to both.

3



6 Set Theory and Logic Ch. 1

The Intersection of Sets, the Empty Set, and the Meaning of “If . . . Then”

Given sets A and B, another way one can form a set is to take the common part of A
and B. This set is called the intersection of A and B and is denoted by A∩B. Formally,
we define

A ∩ B = {x | x ∈ A and x ∈ B}.
But just as with the definition of A∪ B, there is a difficulty. The difficulty is not in the
meaning of the word “and”; it is of a different sort. It arises when the sets A and B
happen to have no elements in common. What meaning does the symbol A ∩ B have
in such a case?

To take care of this eventuality, we make a special convention. We introduce a
special set that we call the empty set, denoted by ∅, which we think of as “the set
having no elements.”

Using this convention, we express the statement that A and B have no elements in
common by the equation

A ∩ B = ∅.

We also express this fact by saying that A and B are disjoint.
Now some students are bothered by the notion of an “empty set.” “How,” they say,

“can you have a set with nothing in it?” The problem is similar to that which arose
many years ago when the number 0 was first introduced.

The empty set is only a convention, and mathematics could very well get along
without it. But it is a very convenient convention, for it saves us a good deal of
awkwardness in stating theorems and in proving them. Without this convention, for
instance, one would have to prove that the two sets A and B do have elements in
common before one could use the notation A ∩ B. Similarly, the notation

C = {x | x ∈ A and x has a certain property}
could not be used if it happened that no element x of A had the given property. It is
much more convenient to agree that A ∩ B and C equal the empty set in such cases.

Since the empty set ∅ is merely a convention, we must make conventions relating
it to the concepts already introduced. Because ∅ is thought of as “the set with no
elements,” it is clear we should make the convention that for each object x , the relation
x ∈ ∅ does not hold. Similarly, the definitions of union and intersection show that for
every set A we should have the equations

A ∪∅ = A and A ∩∅ = ∅.

The inclusion relation is a bit more tricky. Given a set A, should we agree that
∅ ⊂ A? Once more, we must be careful about the way mathematicians use the English
language. The expression ∅ ⊂ A is a shorthand way of writing the sentence, “Every
element that belongs to the empty set also belongs to the set A.” Or to put it more

4



§1 Fundamental Concepts 7

formally, “For every object x , if x belongs to the empty set, then x also belongs to the
set A.”

Is this statement true or not? Some might say “yes” and others say “no.” You
will never settle the question by argument, only by agreement. This is a statement of
the form “If P , then Q,” and in everyday English the meaning of the “if . . . then”
construction is ambiguous. It always means that if P is true, then Q is true also.
Sometimes that is all it means; other times it means something more: that if P is false,
Q must be false. Usually one decides from the context which interpretation is correct.

The situation is similar to the ambiguity in the use of the word “or.” One can refor-
mulate the examples involving Miss Smith and Mr. Jones to illustrate the ambiguity.
Suppose I said the following:

“Miss Smith, if any student registered for this course has not taken a course in
linear algebra, then he has taken a course in analysis.”

“Mr. Jones, if you get a grade below 70 on the final, you are going to flunk this
course.”

In the context, Miss Smith understands that if a student in the course has not had linear
algebra, then he has taken analysis, but if he has had linear algebra, he may or may not
have taken analysis as well. And Mr. Jones knows that if he gets a grade below 70, he
will flunk the course, but if he gets a grade of at least 70, he will pass.

Again, mathematics cannot tolerate ambiguity, so a choice of meanings must be
made. Mathematicians have agreed always to use “if . . . then” in the first sense, so
that a statement of the form “If P , then Q” means that if P is true, Q is true also, but
if P is false, Q may be either true or false.

As an example, consider the following statement about real numbers:

If x > 0, then x3 �= 0.

It is a statement of the form, “If P , then Q,” where P is the phrase “x > 0” (called
the hypothesis of the statement) and Q is the phrase “x3 �= 0” (called the conclusion
of the statement). This is a true statement, for in every case for which the hypothesis
x > 0 holds, the conclusion x3 �= 0 holds as well.

Another true statement about real numbers is the following:

If x2 < 0, then x = 23;

in every case for which the hypothesis holds, the conclusion holds as well. Of course,
it happens in this example that there are no cases for which the hypothesis holds. A
statement of this sort is sometimes said to be vacuously true.

To return now to the empty set and inclusion, we see that the inclusion ∅ ⊂ A
does hold for every set A. Writing ∅ ⊂ A is the same as saying, “If x ∈ ∅, then
x ∈ A,” and this statement is vacuously true.

5



8 Set Theory and Logic Ch. 1

Contrapositive and Converse

Our discussion of the “if . . . then” construction leads us to consider another point of
elementary logic that sometimes causes difficulty. It concerns the relation between a
statement, its contrapositive, and its converse.

Given a statement of the form “If P , then Q,” its contrapositive is defined to be
the statement “If Q is not true, then P is not true.” For example, the contrapositive of
the statement

If x > 0, then x3 �= 0,

is the statement

If x3 = 0, then it is not true that x > 0.

Note that both the statement and its contrapositive are true. Similarly, the statement

If x2 < 0, then x = 23,

has as its contrapositive the statement

If x �= 23, then it is not true that x2 < 0.

Again, both are true statements about real numbers.
These examples may make you suspect that there is some relation between a state-

ment and its contrapositive. And indeed there is; they are two ways of saying precisely
the same thing. Each is true if and only if the other is true; they are logically equiva-
lent.

This fact is not hard to demonstrate. Let us introduce some notation first. As a
shorthand for the statement “If P , then Q,” we write

P 	⇒ Q,

which is read “P implies Q.” The contrapositive can then be expressed in the form

(not Q) 	⇒ (not P),

where “not Q” stands for the phrase “Q is not true.”
Now the only way in which the statement “P ⇒ Q” can fail to be correct is if the

hypothesis P is true and the conclusion Q is false. Otherwise it is correct. Similarly,
the only way in which the statement (not Q) ⇒ (not P) can fail to be correct is if
the hypothesis “not Q” is true and the conclusion “not P” is false. This is the same
as saying that Q is false and P is true. And this, in turn, is precisely the situation in
which P ⇒ Q fails to be correct. Thus, we see that the two statements are either both
correct or both incorrect; they are logically equivalent. Therefore, we shall accept a
proof of the statement “not Q ⇒ not P” as a proof of the statement “P ⇒ Q.”

There is another statement that can be formed from the statement P ⇒ Q. It is
the statement

Q 	⇒ P,

6



§1 Fundamental Concepts 9

which is called the converse of P ⇒ Q. One must be careful to distinguish between a
statement’s converse and its contrapositive. Whereas a statement and its contrapositive
are logically equivalent, the truth of a statement says nothing at all about the truth or
falsity of its converse. For example, the true statement

If x > 0, then x3 �= 0,

has as its converse the statement

If x3 �= 0, then x > 0,

which is false. Similarly, the true statement

If x2 < 0, then x = 23,

has as its converse the statement

If x = 23, then x2 < 0,

which is false.
If it should happen that both the statement P ⇒ Q and its converse Q ⇒ P are

true, we express this fact by the notation

P ⇐⇒ Q,

which is read “P holds if and only if Q holds.”

Negation

If one wishes to form the contrapositive of the statement P ⇒ Q, one has to know
how to form the statement “not P ,” which is called the negation of P . In many cases,
this causes no difficulty; but sometimes confusion occurs with statements involving the
phrases “for every” and “for at least one.” These phrases are called logical quantifiers.

To illustrate, suppose that X is a set, A is a subset of X , and P is a statement about
the general element of X . Consider the following statement:

For every x ∈ A, statement P holds.(∗)

How does one form the negation of this statement? Let us translate the problem into
the language of sets. Suppose that we let B denote the set of all those elements x
of X for which P holds. Then statement (∗) is just the statement that A is a subset
of B. What is its negation? Obviously, the statement that A is not a subset of B; that
is, the statement that there exists at least one element of A that does not belong to B.
Translating back into ordinary language, this becomes

For at least one x ∈ A, statement P does not hold.

Therefore, to form the negation of statement (∗), one replaces the quantifier “for every”
by the quantifier “for at least one,” and one replaces statement P by its negation.

7



10 Set Theory and Logic Ch. 1

The process works in reverse just as well; the negation of the statement

For at least one x ∈ A, statement Q holds,

is the statement

For every x ∈ A, statement Q does not hold.

The Difference of Two Sets

We return now to our discussion of sets. There is one other operation on sets that is
occasionally useful. It is the difference of two sets, denoted by A − B, and defined as
the set consisting of those elements of A that are not in B. Formally,

A − B = {x | x ∈ A and x /∈ B}.
It is sometimes called the complement of B relative to A, or the complement of B in A.

Our three set operations are represented schematically in Figure 1.1.

A − BA ∩ BA ∪ B

A A A

BBB

Figure 1.1

Rules of Set Theory

Given several sets, one may form new sets by applying the set-theoretic operations to
them. As in algebra, one uses parentheses to indicate in what order the operations are
to be performed. For example, A ∪ (B ∩ C) denotes the union of the two sets A and
B ∩ C , while (A ∪ B) ∩ C denotes the intersection of the two sets A ∪ B and C . The
sets thus formed are quite different, as Figure 1.2 shows.

A

C

B B

C

A

(A ∪ B ) ∩ CA ∪ (B ∩ C )

Figure 1.2

8



§1 Fundamental Concepts 11

Sometimes different combinations of operations lead to the same set; when that
happens, one has a rule of set theory. For instance, it is true that for any sets A, B,
and C the equation

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

holds. The equation is illustrated in Figure 1.3; the shaded region represents the set in
question, as you can check mentally. This equation can be thought of as a “distributive
law” for the operations ∩ and ∪.

A B

C

Figure 1.3

Other examples of set-theoretic rules include the second “distributive law,”

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C),

and DeMorgan’s laws,

A − (B ∪ C) = (A − B) ∩ (A − C),

A − (B ∩ C) = (A − B) ∪ (A − C).

We leave it to you to check these rules. One can state other rules of set theory, but
these are the most important ones. DeMorgan’s laws are easier to remember if you
verbalize them as follows:

The complement of the union equals the intersection of the complements.
The complement of the intersection equals the union of the complements.

Collections of Sets

The objects belonging to a set may be of any sort. One can consider the set of all even
integers, and the set of all blue-eyed people in Nebraska, and the set of all decks of
playing cards in the world. Some of these are of limited mathematical interest, we
admit! But the third example illustrates a point we have not yet mentioned: namely,
that the objects belonging to a set may themselves be sets. For a deck of cards is itself
a set, one consisting of pieces of pasteboard with certain standard designs printed on
them. The set of all decks of cards in the world is thus a set whose elements are
themselves sets (of pieces of pasteboard).

9



12 Set Theory and Logic Ch. 1

We now have another way to form new sets from old ones. Given a set A, we can
consider sets whose elements are subsets of A. In particular, we can consider the set
of all subsets of A. This set is sometimes denoted by the symbol P (A) and is called
the power set of A (for reasons to be explained later).

When we have a set whose elements are sets, we shall often refer to it as a collec-
tion of sets and denote it by a script letter such as A or B. This device will help us
in keeping things straight in arguments where we have to consider objects, and sets of
objects, and collections of sets of objects, all at the same time. For example, we might
use A to denote the collection of all decks of cards in the world, letting an ordinary
capital letter A denote a deck of cards and a lowercase letter a denote a single playing
card.

A certain amount of care with notation is needed at this point. We make a distinc-
tion between the object a, which is an element of a set A, and the one-element set {a},
which is a subset of A. To illustrate, if A is the set {a, b, c}, then the statements

a ∈ A, {a} ⊂ A, and {a} ∈ P (A)

are all correct, but the statements {a} ∈ A and a ⊂ A are not.

Arbitrary Unions and Intersections

We have already defined what we mean by the union and the intersection of two sets.
There is no reason to limit ourselves to just two sets, for we can just as well form the
union and intersection of arbitrarily many sets.

Given a collection A of sets, the union of the elements of A is defined by the
equation �

A∈A

A = {x | x ∈ A for at least one A ∈ A}.

The intersection of the elements of A is defined by the equation�
A∈A

A = {x | x ∈ A for every A ∈ A}.

There is no problem with these definitions if one of the elements of A happens to be
the empty set. But it is a bit tricky to decide what (if anything) these definitions mean
if we allow A to be the empty collection. Applying the definitions literally, we see that
no element x satisfies the defining property for the union of the elements of A. So it is
reasonable to say that �

A∈A

A = ∅

if A is empty. On the other hand, every x satisfies (vacuously) the defining property for
the intersection of the elements of A. The question is, every x in what set? If one has a
given large set X that is specified at the outset of the discussion to be one’s “universe of
discourse,” and one considers only subsets of X throughout, it is reasonable to let�

A∈A

A = X

10



§1 Fundamental Concepts 13

when A is empty. Not all mathematicians follow this convention, however. To avoid
difficulty, we shall not define the intersection when A is empty.

Cartesian Products

There is yet another way of forming new sets from old ones; it involves the notion of an
“ordered pair” of objects. When you studied analytic geometry, the first thing you did
was to convince yourself that after one has chosen an x-axis and a y-axis in the plane,
every point in the plane can be made to correspond to a unique ordered pair (x, y) of
real numbers. (In a more sophisticated treatment of geometry, the plane is more likely
to be defined as the set of all ordered pairs of real numbers!)

The notion of ordered pair carries over to general sets. Given sets A and B, we
define their cartesian product A× B to be the set of all ordered pairs (a, b) for which a
is an element of A and b is an element of B. Formally,

A × B = {(a, b) | a ∈ A and b ∈ B}.
This definition assumes that the concept of “ordered pair” is already given. It can be

taken as a primitive concept, as was the notion of “set”; or it can be given a definition in
terms of the set operations already introduced. One definition in terms of set operations is
expressed by the equation

(a, b) = {{a}, {a, b}};
it defines the ordered pair (a, b) as a collection of sets. If a �= b, this definition says that
(a, b) is a collection containing two sets, one of which is a one-element set and the other
a two-element set. The first coordinate of the ordered pair is defined to be the element
belonging to both sets, and the second coordinate is the element belonging to only one of
the sets. If a = b, then (a, b) is a collection containing only one set {a}, since {a, b} =
{a, a} = {a} in this case. Its first coordinate and second coordinate both equal the element
in this single set.

I think it is fair to say that most mathematicians think of an ordered pair as a primitive
concept rather than thinking of it as a collection of sets!

Let us make a comment on notation. It is an unfortunate fact that the notation (a, b)

is firmly established in mathematics with two entirely different meanings. One mean-
ing, as an ordered pair of objects, we have just discussed. The other meaning is the
one you are familiar with from analysis; if a and b are real numbers, the symbol (a, b)

is used to denote the interval consisting of all numbers x such that a < x < b. Most of
the time, this conflict in notation will cause no difficulty because the meaning will be
clear from the context. Whenever a situation occurs where confusion is possible, we
shall adopt a different notation for the ordered pair (a, b), denoting it by the symbol

a × b

instead.

11



14 Set Theory and Logic Ch. 1

Exercises

1. Check the distributive laws for ∪ and ∩ and DeMorgan’s laws.

2. Determine which of the following statements are true for all sets A, B, C , and D.
If a double implication fails, determine whether one or the other of the possible
implications holds. If an equality fails, determine whether the statement be-
comes true if the “equals” symbol is replaced by one or the other of the inclusion
symbols ⊂ or ⊃.
(a) A ⊂ B and A ⊂ C ⇔ A ⊂ (B ∪ C).
(b) A ⊂ B or A ⊂ C ⇔ A ⊂ (B ∪ C).
(c) A ⊂ B and A ⊂ C ⇔ A ⊂ (B ∩ C).
(d) A ⊂ B or A ⊂ C ⇔ A ⊂ (B ∩ C).
(e) A − (A − B) = B.
(f) A − (B − A) = A − B.
(g) A ∩ (B − C) = (A ∩ B)− (A ∩ C).
(h) A ∪ (B − C) = (A ∪ B)− (A ∪ C).
(i) (A ∩ B) ∪ (A − B) = A.
(j) A ⊂ C and B ⊂ D ⇒ (A × B) ⊂ (C × D).
(k) The converse of (j).
(l) The converse of (j), assuming that A and B are nonempty.
(m) (A × B) ∪ (C × D) = (A ∪ C)× (B ∪ D).
(n) (A × B) ∩ (C × D) = (A ∩ C)× (B ∩ D).
(o) A × (B − C) = (A × B)− (A × C).
(p) (A − B)× (C − D) = (A × C − B × C)− A × D.
(q) (A × B)− (C × D) = (A − C)× (B − D).

3. (a) Write the contrapositive and converse of the following statement: “If x < 0,
then x2 − x > 0,” and determine which (if any) of the three statements are
true.

(b) Do the same for the statement “If x > 0, then x2 − x > 0.”

4. Let A and B be sets of real numbers. Write the negation of each of the following
statements:
(a) For every a ∈ A, it is true that a2 ∈ B.
(b) For at least one a ∈ A, it is true that a2 ∈ B.
(c) For every a ∈ A, it is true that a2 /∈ B.
(d) For at least one a /∈ A, it is true that a2 ∈ B.

5. Let A be a nonempty collection of sets. Determine the truth of each of the
following statements and of their converses:
(a) x ∈�A∈A A ⇒ x ∈ A for at least one A ∈ A.
(b) x ∈�A∈A A ⇒ x ∈ A for every A ∈ A.
(c) x ∈�A∈A A ⇒ x ∈ A for at least one A ∈ A.
(d) x ∈�A∈A A ⇒ x ∈ A for every A ∈ A.

6. Write the contrapositive of each of the statements of Exercise 5.

12



§2 Functions 15

7. Given sets A, B, and C , express each of the following sets in terms of A, B,
and C , using the symbols ∪, ∩, and −.

D = {x | x ∈ A and (x ∈ B or x ∈ C)},
E = {x | (x ∈ A and x ∈ B) or x ∈ C},
F = {x | x ∈ A and (x ∈ B ⇒ x ∈ C)}.

8. If a set A has two elements, show that P (A) has four elements. How many
elements does P (A) have if A has one element? Three elements? No elements?
Why is P (A) called the power set of A?

9. Formulate and prove DeMorgan’s laws for arbitrary unions and intersections.

10. Let R denote the set of real numbers. For each of the following subsets of R×R,
determine whether it is equal to the cartesian product of two subsets of R.
(a) {(x, y) | x is an integer}.
(b) {(x, y) | 0 < y ≤ 1}.
(c) {(x, y) | y > x}.
(d) {(x, y) | x is not an integer and y is an integer}.
(e) {(x, y) | x2 + y2 < 1}.

§2 Functions

The concept of function is one you have seen many times already, so it is hardly nec-
essary to remind you how central it is to all mathematics. In this section, we give the
precise mathematical definition, and we explore some of the associated concepts.

A function is usually thought of as a rule that assigns to each element of a set A,
an element of a set B. In calculus, a function is often given by a simple formula such
as f (x) = 3x2 + 2 or perhaps by a more complicated formula such as

f (x) =
∞�

k=1

xk .

One often does not even mention the sets A and B explicitly, agreeing to take A to be
the set of all real numbers for which the rule makes sense and B to be the set of all real
numbers.

As one goes further in mathematics, however, one needs to be more precise about
what a function is. Mathematicians think of functions in the way we just described,
but the definition they use is more exact. First, we define the following:

Definition. A rule of assignment is a subset r of the cartesian product C × D of two
sets, having the property that each element of C appears as the first coordinate of at
most one ordered pair belonging to r .

13



16 Set Theory and Logic Ch. 1

Thus, a subset r of C × D is a rule of assignment if

[(c, d) ∈ r and (c, d �) ∈ r ] 	⇒ [d = d �].
We think of r as a way of assigning, to the element c of C , the element d of D for
which (c, d) ∈ r .

Given a rule of assignment r , the domain of r is defined to be the subset of C
consisting of all first coordinates of elements of r , and the image set of r is defined as
the subset of D consisting of all second coordinates of elements of r . Formally,

domain r = {c | there exists d ∈ D such that (c, d) ∈ r},
image r = {d | there exists c ∈ C such that (c, d) ∈ r}.

Note that given a rule of assignment r , its domain and image are entirely determined.
Now we can say what a function is.

Definition. A function f is a rule of assignment r , together with a set B that contains
the image set of r . The domain A of the rule r is also called the domain of the
function f ; the image set of r is also called the image set of f ; and the set B is called
the range of f .†

If f is a function having domain A and range B, we express this fact by writing

f : A −→ B,

which is read “ f is a function from A to B,” or “ f is a mapping from A into B,” or
simply “ f maps A into B.” One sometimes visualizes f as a geometric transformation
physically carrying the points of A to points of B.

If f : A → B and if a is an element of A, we denote by f (a) the unique element
of B that the rule determining f assigns to a; it is called the value of f at a, or
sometimes the image of a under f . Formally, if r is the rule of the function f , then
f (a) denotes the unique element of B such that (a, f (a)) ∈ r .

Using this notation, one can go back to defining functions almost as one did before,
with no lack of rigor. For instance, one can write (letting R denote the real numbers)

“Let f be the function whose rule is {(x, x3 + 1) | x ∈ R} and whose
range is R,”

or one can equally well write

“Let f : R → R be the function such that f (x) = x3 + 1.”

Both sentences specify precisely the same function. But the sentence “Let f be the
function f (x) = x3 + 1” is no longer adequate for specifying a function because it
specifies neither the domain nor the range of f .

†Analysts are apt to use the word “range” to denote what we have called the “image set” of f .
They avoid giving the set B a name.

14



§2 Functions 17

Definition. If f : A → B and if A0 is a subset of A, we define the restriction of f
to A0 to be the function mapping A0 into B whose rule is

{(a, f (a)) | a ∈ A0}.
It is denoted by f |A0, which is read “ f restricted to A0.”

EXAMPLE 1. Let R denote the real numbers and let R̄+ denote the nonnegative reals.
Consider the functions

f : R −→ R defined by f (x) = x2,

g : R̄+ −→ R defined by g(x) = x2,

h : R −→ R̄+ defined by h(x) = x2,

k : R̄+ −→ R̄+ defined by k(x) = x2.

The function g is different from the function f because their rules are different subsets of
R×R; it is the restriction of f to the set R̄+. The function h is also different from f , even
though their rules are the same set, because the range specified for h is different from the
range specified for f . The function k is different from all of these. These functions are
pictured in Figure 2.1.

khgf

Figure 2.1

Restricting the domain of a function and changing its range are two ways of form-
ing a new function from an old one. Another way is to form the composite of two
functions.

Definition. Given functions f : A → B and g : B → C , we define the composite
g ◦ f of f and g as the function g ◦ f : A → C defined by the equation (g ◦ f )(a) =
g( f (a)).

Formally, g ◦ f : A → C is the function whose rule is

{(a, c) | For some b ∈ B, f (a) = b and g(b) = c}.
We often picture the composite g ◦ f as involving a physical movement of the point a
to the point f (a), and then to the point g( f (a)), as illustrated in Figure 2.2.

Note that g ◦ f is defined only when the range of f equals the domain of g.

15



18 Set Theory and Logic Ch. 1

a

A

B

g
g(f (a) ) = g (b ) = c

C

f (a) = b

f

Figure 2.2

EXAMPLE 2. The composite of the function f : R → R given by f (x) = 3x2 + 2 and
the function g : R → R given by g(x) = 5x is the function g ◦ f : R → R given by

(g ◦ f )(x) = g( f (x)) = g(3x2 + 2) = 5(3x2 + 2).

The composite f ◦ g can also be formed in this case; it is the quite different function
f ◦ g : R → R given by

( f ◦ g)(x) = f (g(x)) = f (5x) = 3(5x)2 + 2.

Definition. A function f : A → B is said to be injective (or one-to-one) if for each
pair of distinct points of A, their images under f are distinct. It is said to be surjective
(or f is said to map A onto B) if every element of B is the image of some element
of A under the function f . If f is both injective and surjective, it is said to be bijective
(or is called a one-to-one correspondence).

More formally, f is injective if

[ f (a) = f (a�)] 	⇒ [a = a�],
and f is surjective if

[b ∈ B] 	⇒ [b = f (a) for at least one a ∈ A].
Injectivity of f depends only on the rule of f ; surjectivity depends on the range

of f as well. You can check that the composite of two injective functions is injec-
tive, and the composite of two surjective functions is surjective; it follows that the
composite of two bijective functions is bijective.

If f is bijective, there exists a function from B to A called the inverse of f . It is
denoted by f −1 and is defined by letting f −1(b) be that unique element a of A for
which f (a) = b. Given b ∈ B, the fact that f is surjective implies that there exists
such an element a ∈ A; the fact that f is injective implies that there is only one such
element a. It is easy to see that if f is bijective, f −1 is also bijective.

EXAMPLE 3. Consider again the functions f , g, h, and k of Figure 2.1. The function
f : R → R given by f (x) = x2 is neither injective nor surjective. Its restriction g to the
nonnegative reals is injective but not surjective. The function h : R → R̄+ obtained from f

16



§2 Functions 19

by changing the range is surjective but not injective. The function k : R̄+ → R̄+ obtained
from f by restricting the domain and changing the range is both injective and surjective,
so it has an inverse. Its inverse is, of course, what we usually call the square-root function.

A useful criterion for showing that a given function f is bijective is the following,
whose proof is left to the exercises:

Lemma 2.1. Let f : A → B. If there are functions g : B → A and h : B → A
such that g( f (a)) = a for every a in A and f (h(b)) = b for every b in B, then f is
bijective and g = h = f −1.

Definition. Let f : A → B. If A0 is a subset of A, we denote by f (A0) the set
of all images of points of A0 under the function f ; this set is called the image of A0
under f . Formally,

f (A0) = {b | b = f (a) for at least one a ∈ A0}.
On the other hand, if B0 is a subset of B, we denote by f −1(B0) the set of all elements
of A whose images under f lie in B0; it is called the preimage of B0 under f (or the
“counterimage,” or the “inverse image,” of B0). Formally,

f −1(B0) = {a | f (a) ∈ B0}.
Of course, there may be no points a of A whose images lie in B0; in that case, f −1(B0)

is empty.

Note that if f : A → B is bijective and B0 ⊂ B, we have two meanings for the
notation f −1(B0). It can be taken to denote the preimage of B0 under the function f
or to denote the image of B0 under the function f −1 : B → A. These two meanings
give precisely the same subset of A, however, so there is, in fact, no ambiguity.

Some care is needed if one is to use the f and f −1 notation correctly. The opera-
tion f −1, for instance, when applied to subsets of B, behaves very nicely; it preserves
inclusions, unions, intersections, and differences of sets. We shall use this fact fre-
quently. But the operation f , when applied to subsets of A, preserves only inclusions
and unions. See Exercises 2 and 3.

As another situation where care is needed, we note that it is not in general true that
f −1( f (A0)) = A0 and f ( f −1(B0)) = B0. (See the following example.) The relevant
rules, which we leave to you to check, are the following: If f : A → B and if A0 ⊂ A
and B0 ⊂ B, then

A0 ⊂ f −1( f (A0)) and f ( f −1(B0)) ⊂ B0.

The first inclusion is an equality if f is injective, and the second inclusion is an equality
if f is surjective.

17



20 Set Theory and Logic Ch. 1

EXAMPLE 4. Consider the function f : R → R given by f (x) = 3x2 + 2 (Figure 2.3).
Let [a, b] denote the closed interval a ≤ x ≤ b. Then

f −1( f ([0, 1])) = f −1([2, 5]) = [−1, 1], and

f ( f −1([0, 5])) = f ([−1, 1]) = [2, 5].

−2 −1 1 2

1

2

3

4

5

6

y = f(x)

Figure 2.3

Exercises

1. Let f : A → B. Let A0 ⊂ A and B0 ⊂ B.
(a) Show that A0 ⊂ f −1( f (A0)) and that equality holds if f is injective.
(b) Show that f ( f −1(B0)) ⊂ B0 and that equality holds if f is surjective.

2. Let f : A → B and let Ai ⊂ A and Bi ⊂ B for i = 0 and i = 1. Show that f −1

preserves inclusions, unions, intersections, and differences of sets:
(a) B0 ⊂ B1 ⇒ f −1(B0) ⊂ f −1(B1).
(b) f −1(B0 ∪ B1) = f −1(B0) ∪ f −1(B1).
(c) f −1(B0 ∩ B1) = f −1(B0) ∩ f −1(B1).
(d) f −1(B0 − B1) = f −1(B0)− f −1(B1).
Show that f preserves inclusions and unions only:
(e) A0 ⊂ A1 ⇒ f (A0) ⊂ f (A1).

18



§3 Relations 21

(f) f (A0 ∪ A1) = f (A0) ∪ (A1).
(g) f (A0 ∩ A1) ⊂ f (A0) ∩ f (A1); show that equality holds if f is injective.
(h) f (A0 − A1) ⊃ f (A0)− f (A1); show that equality holds if f is injective.

3. Show that (b), (c), (f), and (g) of Exercise 2 hold for arbitrary unions and inter-
sections.

4. Let f : A → B and g : B → C .
(a) If C0 ⊂ C , show that (g ◦ f )−1(C0) = f −1(g−1(C0)).
(b) If f and g are injective, show that g ◦ f is injective.
(c) If g ◦ f is injective, what can you say about injectivity of f and g?
(d) If f and g are surjective, show that g ◦ f is surjective.
(e) If g ◦ f is surjective, what can you say about surjectivity of f and g?
(f) Summarize your answers to (b)–(e) in the form of a theorem.

5. In general, let us denote the identity function for a set C by iC . That is, define
iC : C → C to be the function given by the rule iC (x) = x for all x ∈ C .
Given f : A → B, we say that a function g : B → A is a left inverse for f if
g ◦ f = i A; and we say that h : B → A is a right inverse for f if f ◦ h = iB .
(a) Show that if f has a left inverse, f is injective; and if f has a right inverse,

f is surjective.
(b) Give an example of a function that has a left inverse but no right inverse.
(c) Give an example of a function that has a right inverse but no left inverse.
(d) Can a function have more than one left inverse? More than one right inverse?
(e) Show that if f has both a left inverse g and a right inverse h, then f is

bijective and g = h = f −1.

6. Let f : R → R be the function f (x) = x3 − x . By restricting the domain and
range of f appropriately, obtain from f a bijective function g. Draw the graphs
of g and g−1. (There are several possible choices for g.)

§3 Relations

A concept that is, in some ways, more general than that of function is the concept of
a relation. In this section, we define what mathematicians mean by a relation, and
we consider two types of relations that occur with great frequency in mathematics:
equivalence relations and order relations. Order relations will be used throughout the
book; equivalence relations will not be used until §22.

Definition. A relation on a set A is a subset C of the cartesian product A × A.

If C is a relation on A, we use the notation xCy to mean the same thing as (x, y) ∈
C . We read it “x is in the relation C to y.”

A rule of assignment r for a function f : A → A is also a subset of A× A. But it
is a subset of a very special kind: namely, one such that each element of A appears as
the first coordinate of an element of r exactly once. Any subset of A × A is a relation
on A.
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EXAMPLE 1. Let P denote the set of all people in the world, and define D ⊂ P × P by
the equation

D = {(x, y) | x is a descendant of y}.
Then D is a relation on the set P . The statements “x is in the relation D to y” and “x is
a descendant of y” mean precisely the same thing, namely, that (x, y) ∈ D. Two other
relations on P are the following:

B = {(x, y) | x has an ancestor who is also an ancestor of y},
S = {(x, y) | the parents of x are the parents of y}.

We can call B the “blood relation” (pun intended), and we can call S the “sibling relation.”
These three relations have quite different properties. The blood relationship is symmetric,
for instance (if x is a blood relative of y, then y is a blood relative of x), whereas the
descendant relation is not. We shall consider these relations again shortly.

Equivalence Relations and Partitions

An equivalence relation on a set A is a relation C on A having the following three
properties:

(1) (Reflexivity) xCx for every x in A.

(2) (Symmetry) If xCy, then yCx .

(3) (Transitivity) If xCy and yCz, then xCz.

EXAMPLE 2. Among the relations defined in Example 1, the descendant relation D is
neither reflexive nor symmetric, while the blood relation B is not transitive (I am not a
blood relation to my wife, although my children are!) The sibling relation S is, however,
an equivalence relation, as you may check.

There is no reason one must use a capital letter—or indeed a letter of any sort—
to denote a relation, even though it is a set. Another symbol will do just as well.
One symbol that is frequently used to denote an equivalence relation is the “tilde”
symbol ∼. Stated in this notation, the properties of an equivalence relation become

(1) x ∼ x for every x in A.

(2) If x ∼ y, then y ∼ x .

(3) If x ∼ y and y ∼ z, then x ∼ z.
There are many other symbols that have been devised to stand for particular equiva-
lence relations; we shall meet some of them in the pages of this book.

Given an equivalence relation ∼ on a set A and an element x of A, we define a
certain subset E of A, called the equivalence class determined by x , by the equation

E = {y | y ∼ x}.
Note that the equivalence class E determined by x contains x , since x ∼ x . Equiva-
lence classes have the following property:
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